DO THE $\Delta\phi$ CURVES IN ΔT MEASUREMENT INTERSECT AT A COMMON POINT?

LU-220

Hua-shun Zhang

30 April 1993

As pointed [1] that the $\Delta \varphi$ curves in Δt measurement intersect at a common point and this point occurs when $\Delta \varphi_b = \Delta \varphi_a$ and $\Delta W_b = -\Delta W_a$. Now we will discuss what is the condition of this conclusion.

Following the results and signs given in Ref.[2], we have:

$$\begin{pmatrix} \Delta \varphi_b \\ \Delta W_b \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} \Delta \varphi_a \\ \Delta W_a \end{pmatrix}$$
(1)
$$\begin{pmatrix} \Delta t_b \\ \Delta t_c \end{pmatrix} = \begin{pmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{pmatrix} \begin{pmatrix} \Delta \varphi_a \\ \Delta W_a \end{pmatrix}$$
(2)
$$t_{11} = \frac{1 - m_{11}}{\omega} \quad \text{(assuming } D_1 = 0)$$

$$t_{12} = -\frac{m_{12}}{\omega} - \frac{D_{ab}}{E_r c \eta_a^3} = -\frac{m_{12}}{\omega} - \tau_{ab}$$

$$t_{21} = \frac{1 - m_{11}}{\omega} + \frac{D_2 m_{21}}{E_r c \eta_b^3} = \frac{1 - m_{11}}{\omega} + \tau_{bc} m_{21}$$

$$t_{22} = -\frac{m_{12}}{\omega} - \frac{D_{ab}}{E_r c \eta_c^3} - \frac{D_2}{E_r c} \left(\frac{1}{\eta_c^3} - \frac{m_{22}}{\eta_c^3}\right)$$

Thus

$$\Delta t_b = -\tau_{ab} \Delta W_a + \frac{1 - m_{11}}{\omega} \left(\Delta \varphi_a - \frac{m_{12}}{1 - m_{11}} \Delta W_a \right)$$

$$\Delta t_c = \left(\frac{1 - m_{11}}{\omega} + \tau_{bc} m_{21} \right) \Delta \varphi_a$$

$$- \left(\frac{m_{12}}{\omega} + \tau_{ab} + \tau_{bc} \frac{\eta_b^3}{\eta_a^3} - \tau_{bc} m_{22} \right) \Delta W_a$$

$$(4)$$

As known: $m_{11}m_{22} - m_{12}m_{21} = 1$, then

$$\Delta t_{c} = -\left[\tau_{ab} + \tau_{bc}\left(1 + \frac{\eta_{b}^{3}}{\eta_{a}^{3}}\right)\right] \Delta W_{a} + \left(\frac{1 - m_{11}}{\omega}\right) \left(\Delta \varphi_{a} - \frac{m_{12}}{1 - m_{11}} \Delta W_{a}\right) + m_{21}\tau_{bc}\left[\Delta \varphi_{a} - \frac{m_{12}(1 + m_{22})}{1 - m_{11}m_{22}} \Delta W_{a}\right]$$
(5)

As seen, when $m_{11} = m_{22}$ (Note: this is not the actual situation.),

$$\Delta t_c = -\left[\tau_{ab} + \tau_{bc}\left(1 + \frac{\eta_b^3}{\eta_c^3}\right)\right] \Delta W_a$$

$$+\left[\left(\frac{1 - m_{11}}{\omega}\right) + m_{21}\tau_{bc}\right] \left[\Delta \varphi_a - \frac{m_{12}}{1 - m_{11}} \Delta W_a\right] \qquad (6)$$

From the Eqs. (3) and (6), we know that for a given ΔW_a , at condition of $m_{11}=m_{22}$ and $\Delta \varphi_a=\frac{m_{12}}{1-m_{11}}\Delta W_a$, all the $\Delta \phi$ curves intersect at a common point, independent of the values of m_{ij} , as well as the electric field. And

$$\Delta t_b = -\tau_{ab} \Delta W_a = -\Delta t_b^* \tag{7}$$

$$\Delta t_c = -\left[\tau_{ab} + \tau_{bc}\left(1 + \frac{\eta_b^3}{\eta_a^3}\right)\right] \Delta W_a = -\Delta t_c^*$$
 (8)

In addition, the physical meaning of this point is:

$$\Delta\varphi_{b} = m_{11}\Delta\varphi_{a} + m_{12}\Delta W_{a} = m_{11}\Delta\varphi_{a} + \frac{m_{12}(1 - m_{11})}{m_{12}}\Delta\varphi_{a} = \Delta\varphi_{a}(9)$$

$$\Delta W_{b} = m_{21}\Delta\varphi_{a} + m_{22}\Delta W_{a} = \frac{m_{21}m_{12}}{1 - m_{11}}\Delta W_{a} + m_{22}\Delta W_{a} = -\Delta W_{a}(10)$$

The slope of the line composed by all the intersect points is given by:

$$\frac{\Delta t_c}{\Delta t_b} = 1 + \frac{\tau_{bc}}{\tau_{ab}} \left(\frac{\eta_b^3}{\eta_c^3} + 1 \right) = 1 + \frac{\tau_{bc}}{\tau_{ab}} + \frac{D_2}{D_{ab}}$$

$$\tag{11}$$

This slope may give us some information about the motion of the real beam center.

However, actually, $m_{11} \neq m_{22}$, we have:

$$\Delta t_{b} = -\Delta t_{b}^{*} + \frac{1 - m_{11}}{\omega} \left(\Delta \varphi_{a} - \frac{m_{12}}{1 - m_{11}} \Delta W_{a} \right)$$

$$\Delta t_{c} = -\Delta t_{c}^{*} + \frac{1 - m_{11}}{\omega} \left(\Delta \varphi_{a} - \frac{m_{12}}{1 - m_{11}} \Delta W_{a} \right)$$

$$+ m_{21} \tau_{bc} \left[\Delta \varphi_{a} - \frac{m_{12} (1 + m_{22})}{1 - m_{11} m_{22}} \Delta W_{a} \right]$$
(13)

As shown in Tab.1 and Tab.2, the difference between m_{11} and m_{22} is not negligible. Thus a common intersect point is questionable.

In order to estimate this difference in order of magnitude, using the data for LANL in Ref.[2], Tab.1 gives the results of some modules of LANL, assuming $\Delta W_a/W_a \sim 0.3\%$.

Tab. 1 The difference order for LANL						
	A =	B =	$\Delta \varphi_{a_1} - \Delta \varphi_{a_2} =$	$\delta \Delta t_c =$		
Module	$\frac{m_{12}}{1-m_{11}}$	$\frac{m_{12}(1+m_{22})}{1-m_{11}m_{22}}$	$(A-B)\Delta W_a$	$m_{21}\eta_{bc}(\Delta\varphi_{a_1}-\Delta\varphi_{a_2})$		
5	0.2982	0.2662	0.55°	5.0 ps		
12	-0.0376	0.0257	2.14°	7.2 ps		
21	-0.1682	-0.1372	1.78°	31.6 ps		
25	-0.1821	-0.1735	0.58°	9.2 ps		
34	-0.2058	-0.1824	2.2°	16.8 ps		
42	-0.1893	-0.1736	1.89°	12.2 ps		
45	-0.2005	-0.1902	1.33°	10.4 ps		

Using the data for our upgrade tanks^[3], the results are shown in Tab.2.

Tab. 2 The difference order for FNL						
	A =	B =	$\Delta \varphi_{a_1} - \Delta \varphi_{a_2} =$	$\delta \Delta t_e =$		
Module	$\frac{m_{12}}{1-m_{11}}$	$\frac{m_{12}(1+m_{22})}{1-m_{11}m_{22}}$	$(A-B)\Delta W_a$	$m_{21} au_{bc}(\Deltaarphi_{a_1}-\Deltaarphi_{a_2})$		
11	0.02454	-0.04545	1.5°	-5.8 ps		
12	-0.003604	0.1871	5.3°	-4.7 ps		
13	-0.02117	0.05139	12.5°	4.1 ps		
14	-0.03295	-0.009439	1.75°	6.1 ps		
15	-0.04073	-0.02840	0.6°	2,8 ps		
16	-0.04523	-0.03732	0.44°	2,4 ps		
17	-0.04908	-0.04353	0.35°	2.0 ps		

 $\delta \Delta t_c$ may give the upper errors of the "intersect points", which determine the error of the slop composed by the "intersect points".

REFERENCES

- [1] K. R. Crandall, etc. "Proc. of the Sypm. on 1972 linac", p. 122.
- [2] K. R. Crandall, LA-6374-MS.
- [3] T. Owen, LU-177.